173 research outputs found

    Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets

    Get PDF
    Aims/hypothesis: Glutamate dehydrogenase (GDH) is a mitochondrial enzyme playing a key role in the control of insulin secretion. However, it is not known whether GDH expression levels in beta cells are rate-limiting for the secretory response to glucose. GDH also controls glutamine and glutamate oxidative metabolism, which is only weak in islets if GDH is not allosterically activated by L-leucine or (+/−)-2-aminobicyclo-[2,2,1]heptane-2-carboxylic acid (BCH). Methods: We constructed an adenovirus encoding for GDH to overexpress the enzyme in the beta-cell line INS-1E, as well as in isolated rat and mouse pancreatic islets. The secretory responses to glucose and glutamine were studied in static and perifusion experiments. Amino acid concentrations and metabolic parameters were measured in parallel. Results: GDH overexpression in rat islets did not change insulin release at basal or intermediate glucose (2.8 and 8.3mmol/l respectively), but potentiated the secretory response at high glucose concentrations (16.7mmol/l) compared to controls (+35%). Control islets exposed to 5mmol/l glutamine at basal glucose did not increase insulin release, unless BCH was added with a resulting 2.5-fold response. In islets overexpressing GDH glutamine alone stimulated insulin secretion (2.7-fold), which was potentiated 2.2-fold by adding BCH. The secretory responses evoked by glutamine under these conditions correlated with enhanced cellular metabolism. Conclusions/interpretation: GDH could be rate-limiting in glucose-induced insulin secretion, as GDH overexpression enhanced secretory responses. Moreover, GDH overexpression made islets responsive to glutamine, indicating that under physiological conditions this enzyme acts as a gatekeeper to prevent amino acids from being inappropriate efficient secretagogue

    The status of PD-L1 and tumor-infiltrating immune cells predict resistance and poor prognosis in BRAFi-treated melanoma patients harboring mutant BRAFV600

    Get PDF
    In the present study, we have provided clinical evidence of the predictive and prognostic relevance of tumoral PD-L1 expression and density of immune cell infiltration in BRAFV600-mutated metastatic melanoma patients treated with BRAF inhibitor

    Unraveling the developmental roadmap toward human brown adipose tissue

    Get PDF
    Increasing brown adipose tissue (BAT) mass and activation is a therapeutic strategy to treat obesity and complications. Obese and diabetic patients possess low amounts of BAT, so an efficient way to expand their mass is necessary. There is limited knowledge about how human BAT develops, differentiates, and is optimally activated. Accessing human BAT is challenging, given its low volume and anatomical dispersion. These constraints make detailed BAT-related developmental and functional mechanistic studies in humans virtually impossible. We have developed and characterized functionally and molecularly a new chemically defined protocol for the differentiation of human pluripotent stem cells (hPSCs) into brown adipocytes (BAs) that overcomes current limitations. This protocol recapitulates step by step the physiological developmental path of human BAT. The BAs obtained express BA and thermogenic markers, are insulin sensitive, and responsive to β-adrenergic stimuli. This new protocol is scalable, enabling the study of human BAs at early stages of development

    Defective extracellular matrix remodeling in brown adipose tissue is associated with fibro-inflammation and reduced diet-induced thermogenesis.

    Get PDF
    The relevance of extracellular matrix (ECM) remodeling is reported in white adipose tissue (AT) and obesity-related dysfunctions, but little is known about the importance of ECM remodeling in brown AT (BAT) function. Here, we show that a time course of high-fat diet (HFD) feeding progressively impairs diet-induced thermogenesis concomitantly with the development of fibro-inflammation in BAT. Higher markers of fibro-inflammation are associated with lower cold-induced BAT activity in humans. Similarly, when mice are housed at thermoneutrality, inactivated BAT features fibro-inflammation. We validate the pathophysiological relevance of BAT ECM remodeling in response to temperature challenges and HFD using a model of a primary defect in the collagen turnover mediated by partial ablation of the Pepd prolidase. Pepd-heterozygous mice display exacerbated dysfunction and BAT fibro-inflammation at thermoneutrality and in HFD. Our findings show the relevance of ECM remodeling in BAT activation and provide a mechanism for BAT dysfunction in obesity

    Abdominal venous thrombosis presenting in myeloproliferative neoplasm with JAK2 V617F mutation: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>An unprovoked thombotic event in a patient is cause for further evaluation of an underlying hypercoaguable state. The investigation should include a thorough search, including checking for a variety of known inherited and acquired hypercoaguble states (protein C or S deficiency, anti-phospholipid antibodies, and anti-thrombin III deficiency) and gene mutations that predispose patients to an increased risk of clotting (for example, prothrombin gene 20210 mutation, factor V Leiden, and the <it>JAK2 V617F </it>mutation).</p> <p>Case presentation</p> <p>We report the case of a 38-year-old Caucasian woman with spontaneous, unprovoked abdominal venous thrombosis and demonstrate how testing for the <it>JAK2 V617F </it>mutation was useful in unmasking an underlying hypercoaguable state.</p> <p>Conclusions</p> <p><it>JAK2 V617F</it>-positive myeloproliferative neoplasm was diagnosed. This case illustrates the importance of testing for <it>JAK2 V617F </it>in patients presenting with Budd-Chiari syndrome, even in the absence of overt hematologic abnormalities, in order to establish a diagnosis of underlying myeloproliferative neoplasm.</p

    BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions

    Get PDF
    Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b(-/-) mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b(-/-) mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT
    • …
    corecore